Electrochemistry of bis(indenyl)dimethylzirconium complex — the precursor of the olefin polymerization catalyst*

G. V. Loukova, * O. N. Babkina, T. A. Bazhenova, N. M. Bravaya, and V. V. Strelets*

Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (096) 515 3588. E-mail: gloukova@cat.icp.ac.ru; strelets@icp.ac.ru

The reduction in THF and oxidation in CH_2Cl_2 of the bent-sandwich complex $(\eta^5-Ind)_2ZrMe_2$ (1) (Ind = C_9H_7 , indenyl) were studied by cyclic voltammetry. Complex 1 in THF undergoes one-electron reduction to radical anion 1 $^-$, which partially decomposes with the liberation of the Ind $^-$ anion. Even at -45 $^{\circ}C$ the one-electron oxidation leads to the formation of an unstable 15-electron radical cation undergoing fast heterolytic decomposition to the Me $^+$ radical and $(\eta^5-Ind)_2ZrMe^+$ cation, which is the key reaction center in the catalytic polymerization of olefins. Comparative analysis of electron-transfer-induced transformations of bent-sandwich dimethyl and dichloride zirconocenes of the general formula L_2ZrX_2 ($L=\eta^5-Ind$, η^5-Cp ; X=Cl, Me) was performed.

Key words: bis(indenyl)dimethylzirconocene, polymerization catalysts, redox properties, cyclic voltammetry.

It is known that highly reactive catalytic systems for olefin polymerization based on metallocene complexes of Group IVB metals (Ti, Zr, Hf) with σ-bound alkyl ligands are prepared by their treatment with Lewis acids (organoaluminum compounds, polyalkylalumoxanes, perfluorophenylboranes, borates, and others). $^{2-7}$ The main function of cocatalysts of this type is the oxidative elimination of the alkyl ligand and generation of tetravalent cationic complexes of L_2MR^+ type (L is the η -coordinate ligand, R is alkyl).^{2.8-14} A weak coordination of the cocatalyst in the form of a complex counterion is an important condition for providing for efficient insertion of a monomer molecule at the metal-carbon bond in the active center. The acting active center in these catalytic systems, a cationic particle with an active metal-carbon bond, is stabilized in the time scale of the polymer chain growth by weak interactions with a counterion, fragments of the macromolecular chain, solvent, etc. Processes leading to the formation of the active center (primary alkylation of metallocene dichloride, formation of the cationic species L₂MR⁺) and its catalytic effect (insertion of the monomer, chain transfer, etc.) reflect the reactivity of the metal-alkyl σ -bond, which is affected by the nature of the η -bound ligands, substituents, and bridging groups. 14-17

Direct experimental observation and identification of the cationic complexes and possible related intermediates are complicated due to their high reactivity. As a rule, the nature, evolution, and deactivation of active centers are determined from data of macroscopic studies using kinetic laws of the catalyzed polymerization process and structural analysis of individual components of a catalytic system, metallocenes. At the same time, one can attempt to generate an "individual" cationic particle by, e.g., redox transformation of dialkyl metallocenes L_2MR_2 by varying conditions (temperature, medium) and to study its reactivity. We have previously applied a similar approach for studying the mechanism of reduction of bis(2-phenylindenyl) zirconium and hafnium dichloride complexes, and the approach was rather fruitful. 18,19

In this work, low-temperature cyclic voltammetry (CV) was used to study the electron-transfer-induced heterolytic fragmentation of the $(\eta^5-Ind)_2ZrMe_2$ complex (1) and related bent-sandwich zirconocenes L_2ZrX_2 ($L = \eta^5-Ind$, X = CI (2); $L = \eta^5-Cp$, X = Me (3). CI (4)).

Results and Discussion

Reduction of $(\eta^5-Ind)_2ZrMe_2(1)$

The symmetrical pair of peaks A/A' and the irreversible secondary anodic peak B are observed on the cyclic voltammograms of reduction of the 16-electron complex 1 in THF (Fig. 1, a). The potentials of these peaks are presented in Table 1. Peak currents A, A', and B are diffusion-limited ($I_p \cdot v^{-1/2} = \text{const}$, where I_p is the peak height and v is the scan rate). Peaks A and A' correspond to one-electron transfers, which follows from comparison of their heights with that of the one-electron peak of reduction of $(\eta^5-\text{Cp})_2\text{ZrCl}_2$ under the same conditions. 15.21-23 The reduction of complex 1 is char-

^{*} The material of the paper was first reported at the 195th Meeting of the Electrochemical Society (see Ref. 1).

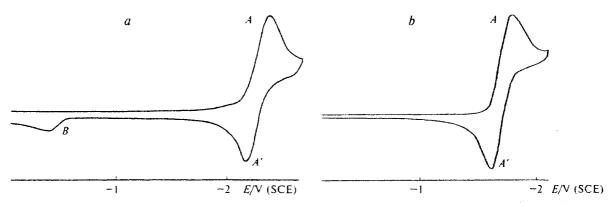


Fig. 1. Cyclic voltammograms of reduction: (a) complex 1 (5 · 10⁻⁴ mol L⁻¹, 8 °C); (b) complex 2 (5 · 10⁻⁴ mol L⁻¹, -15 °C) in THF in the presence of 0.05 M Bu₄NPF₆ on a glassy-carbon electrode at $v = 0.2 \text{ V s}^{-1}$.

acterized by close values of peak currents A/A' $(I_p^a)/I_p^c \approx 0.9$, where I_p^a and I_p^c are the heights of the anodic and cathodic peaks, respectively) and $\Delta E_p = E_p^a - E_p^c = 120$ mV (E_p^a) and E_p^c are the potentials of the anodic and cathodic peaks, respectively). The voltammograms of reduction of the dimethyl (1) and dichloride (2) complexes are presented in Fig. 1 for comparison.

Change from the 16-electron configuration in the starting complex 1 to a 17-electron configuration in radical anion 1⁻⁻ is accompanied by a substantial increase in the reactivity of the zirconocene; the reverse scan allows one to detect a pronounced irreversible peak (B) attributed to solvated reduction products and indicating the kinetic instability of the primary radical anion 1⁻⁻ (Fig. 1, curve a). The temperature decrease from room temperature to -25 to -50 °C results only in a

Table 1. Potentials of peaks on cyclic voltammograms of bis(indenyl)- and bis(cyclopentadienyl)zirconium complexes $(5\cdot 10^{-4} \text{ mol L}^{-1})$ during their reduction in THF and oxidation in CH₂Cl₂ (in the presence of 0.05 M Bu₄NPF₆, a glassy-carbon electrode, sweep rate 0.2 V s⁻¹)

Com- plex	Solvent	T/°C	Peak	$E^{0a}(\mathcal{E}_{p}^{b})/V$ (SCE)
1	THF	8	A/A' B	-2.46 (-0.64)
	CH ₂ CI ₂	-45	С	1.30
2.	THE CH ₂ Cl ₂	-15 -45	A/A.' C	-1.71 1.45
3	THF	8	A/A' B	-2.72 (-0.47)
	CH ₂ Cl ₂	**	C°	. 70
4	THF CH ₂ Cl ₂	-40	A/A' C ^c	-1.78

 $[\]frac{a}{c}E^{0} = (E_{p}^{a} + E_{p}^{c})/2.$

decrease in the peak height, but not its disappearance. Similar voltammograms were obtained for the one-electron reduction of bis(cyclopentadienyl)dimethylzirconium (3): peak B is shifted toward positive potentials, $E_{p,B} = -0.47 \text{ V}$.

The nature of a species oxidized at the potentials of peak B ($E_{p,B} = -0.64$ V for complex 1) is not reliably proved at the present time. Note that a similar species has recently been detected²⁴ upon the reduction of the related titanium complex (η^5 -Ind)₂TiMe₂ (5). The irreversible anodic peak at -0.6 V has been attributed24 to the oxidation of the intermediate titanocene (n⁵-Ind)₂Ti^{III}Me that originated at the reduction potentials of complex 5. However, it can reasonably be assumed that when complexes bear electron-donating ligands of the methyl type, the density of negative charge on the electron-withdrawing ligands η⁵-Cp and/ or n⁵-Ind increases and, therefore, electron transfer may induce cleavage of the metallocene skeleton with elimination of a stable aromatic anion (Cp or Ind). In fact, the addition of a sevenfold excess of indene (IndH) to a solution of complex 1 in THF results in an increase in the height of anodic peak B upon a forward potential scan to the region of formation of Ind- anions. Taking into account this fact and the published data25 on the potentials of the Ind-/Ind redox pair, we can propose the following mechanism of reductive cleavage of zirconocene*:

$$Zr^{\text{III}}Me \xrightarrow{+e^{-}} Ind_{z}Zr^{\text{III}}Me_{z}^{-} \longrightarrow Ind^{-} + IndZr^{\text{III}}Me_{z},$$

^h Potential of the irreversible peak.

^eThe oxidation potential was not measured.

^{*} We do not rule out parallel elimination of the highly reactive Me⁻ anion in dimethyl derivatives.

Oxidation of $(7^5-L)_2ZrX_2$ complexes (L = Ind, Cp; X = Me, Cl)

Oxidation of zirconocenes 1-4 has a sophisticated irreversible mechanism (Fig. 2) and is a superposition of two processes: oxidative heterolysis of the Zr-X bond (X = Me, Cl) and oxidation of the X^* radical, the product of fragmentation of the primarily formed, kinetically unstable 15-electron radical cation $(\eta^5-L)_2ZrX_2^{-+}$. Oxidative homolysis of the Zr-X bond, resulting in the 15-electron complex L₂Zr^{III}X and cation X⁺, is improbable because L₂Zr^{HI}X is a stronger reducing agent in this redox pair.* d0-Complexes containing ligands of the n⁵-cyclopentadienyl type are characterized by an out-of-sphere oxidation via the ECE or EC_{ir} route (E and C are the electrochemical and chemical stages, respectively).²⁰ Note that the above proposed mechanism of two-electron electrooxidation of the 16-electron d^0 -complexes $(\eta^5-L)_2ZrX_2$ (X = Me, Cl) is not exhaustive,** because highly reactive intermediates participate in parallel reactions and passivation of the electrode surface.²⁸

$$Zr \xrightarrow{X} \xrightarrow{-e^{-}} Ind_{2}Zr^{IV}X_{2} \xrightarrow{+}$$

$$X' + Ind_{2}Zr^{IV}X^{+}$$

$$-e^{-}$$

$$X^{+}$$

In conclusion, we note that similar electrochemical processes occur in bent-sandwich cyclopentadienyl zirconocenes (3, 4).

Catalytic activity of intermediate products of electrochemical reactions in olefin polymerization processes is of independent interest and will be discussed elsewhere.

Experimental

Toluene and pentane freshly distilled above LiAtH₄ were used for the synthesis of dimethylzirconocene 1. All procedures were carried out in an atmosphere of purified dry argon using the Schlenk techniques. Bis(indenyl)zirconium dichloride (2) was prepared by a procedure described previously. ¹⁸

Bis(indenyt)dimethylzirconocene, $(\eta^5-\text{Ind})_2\text{ZrMe}_2$ (1). A weighed sample of $(\eta^5-\text{Ind})_2\text{ZrCl}_2$ (2) (1.15 g, 3.3 mmol) was placed in a round-bottomed flask with a Teflon valve and a magnetic stirrer. Anhydrous toluene (20 mL) was frozen into the flask, and a 1.6 M solution (4.12 mL) of MeLi (6.6 mmol, Aldrich) in diethyl ether was added at -80 °C in a dry argon flow. The reaction mixture was slowly (for 0.5 h) heated to

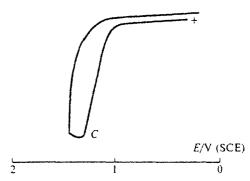


Fig. 2. Cyclic voltammogram of oxidation of complex 1 $(5 \cdot 10^{-4} \text{ mol L}^{-1}, -45 \text{ °C})$ in CH₂Cl₂ in the presence of 0.05 M Bu₄NPF₆ on a glassy-carbon electrode at $v = 0.2 \text{ V s}^{-1}$.

~20 °C with continuous stirring, and the stirring was continued for 16 h. The precipitated LiCl was filtered off, toluene was removed by distillation in vacuo, and $(\eta^5-Ind)_2ZrMe_2$ (1) was extracted from the solid residue with anhydrous pentane (4×40 mL). The pentane extracts were combined, and the solvent was removed by evacuation. Complex 1 was obtained in 80% yield (0.85 g). Found (%): C, 68.27; H, 5.80; Zr, 25.93. $C_{10}H_{20}Zr$. Calculated (%): C, 68.32; H, 5.73; Zr, 25.95.

Voltammetric measurements were carried out in a dry inert atmosphere in CH₂Cl₂ and THF pre-purified and distilled directly to an evacuated and argon-filled electrochemical cell according to a previously described procedure²⁹; THF (Aldrich) was purified by the ketyl method.²⁹ An 0.05 M solution of tetrabutylammonium hexafluorophosphate (Bu₄NPF₆, Aldrich) pre-dehydrated by melting *in vacuo* was used as the supporting electrolyte. Low-temperature electrochemical measurements were carried out in a cell thermostatted with isopropyl alcohol/liquid nitrogen in a Dewar flask.

All potentials were given vs. an aqueous saturated calomel electrode (SCE) and were obtained by referring the potential of the reference electrode (Ag/AgCl/4 M aqueous solution of LiCl), which was separated from the solution under study in the cell by a bridge filled with a solution of the supporting electrolyte, to the potentials of redox transitions (0/+) for ferrocene or decamethylferrocene ($E^0 = 0.44$ and 0 V. respectively, relative to SCE in THF).

A glassy-carbon disk electrode sealed into glass and polished with a diamond paste (grain size $\leq 1~\mu m$) was used as a working electrode. Voltammetric measurements were carried out using a PAR 175 signal generator and a PAR 173 potentiostat with positive feedback circuitry for IR compensation.

This work was financially supported by the Russian Foundation for Basic Research (Project Nos. 96-15-97371 and 97-03-32243).

References

- G. V. Loukova, O. N. Babkina, T. A. Bazhenova, N. M. Bravaya, and V. V. Strelets, The 195th Meeting of the Electrochemical Society (May 2-6, 1999), Abstrs.. Seattle (USA), 1999, 979.
- F. S. Dyachkovskii, A. K. Shilova, and A. E. Shilov, J. Polym. Sci., C, 1967, 16, 2333.

^{*} In MeCN-NaBPh₄, a related Cp₂Zr^{III}Me complex is oxidized at -1.9 V vs. the Fc⁺/Fc⁰ pair, ²⁶ whereas the potential of the Me⁺/Me⁺pair is -0.5 V.²⁷

^{**} The height of oxidation peak C (see Fig. 2) does not reach the two-electron level.

- K. Ziegler, E. Holzkamp, H. Briel, and H. Martin, Angew. Chem., 1955, 67, 541.
- G. Natta, P. Pino, G. Mazzanti, and V. Giannini, J. Am. Chem. Soc., 1957, 79, 2975.
- D. S. Breslow and N. R. Newburg, J. Am. Chem. Soc., 1957, 79, 5072; 1959, 81, 81.
- H. Sinn and W. Kaminsky, Adv. Organomet. Chem., 1980, 18, 99.
- H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, and R. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 107, 1255.
- F. S. Dyachkovskii, E. A. Grigorian, and O. N. Babkina, Int. J. Chem. Kinet., 1981, 13, 603.
- G. G. Hlarky, H. W. Turner, and R. R. Eckman, J. Am. Chem. Soc., 1989, 111, 2728.
- 10. R. F. Jordan, Adv. Organomet. Chem., 1991, 32, 325.
- 11. T. J. Marks, Acc. Chem. Res., 1992, 25, 57.
- Ziegler Catalysts, Eds. G. Fink, R. Mülhaupt, and H. H. Brintzinger, Springer, Berlin, 1995.
- 13. M. Bochmann, Topics in Catalysis, 1999, 1-4, 9.
- G. W. Coates and R. M. Waymouth, Science, 1995, 267, 217.
- 15. V. V. Strelets, Coord. Chem. Rev., 1992, 114, 35.
- N. M. Bravaya, Z. M. Dzhabieva, V. P. Maryin, and V. V. Strelets, *Polimery*, 1997, 42, 591.
- N. M. Bravaya, V. V. Strelets, Z. M. Dzhabieva, O. N. Babkina, and V. P. Maryin, Izv. Akad. Nauk, Ser. Khim., 1998, 1535 [Russ. Chem. Bull., 1998, 47, 1491 (Engl. Transl.)]
- O. N. Babkina, T. A. Bazhenova, N. M. Bravaya, V. V. Strelets, M. Yu. Antipin, and K. A. Lyssenko, Izv. Akad.

- Nauk, Ser. Khim., 1996, 1529 [Russ. Chem. Bull., 1996, 45, 1458 (Engl. Transl.)].
- T. A. Bazhenova, M. Yu. Antipin, O. N. Babkina, N. M. Bravaya, K. A. Lyssenko, and V. V. Strelets, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 2161 [Russ. Chem. Bull., 1997, 46, 2048 (Engl. Transl.)].
- A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, J. Wiley and Sons, Inc., New York, 1980.
- S. V. Kukharenko, G. L. Soloveichik, and V. V. Strelets, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1020 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 926 (Engl. Transl.)].
- S. V. Kukharenko, G. L. Soloveichik, and V. V. Strelets, Metalloorg. Khim., 1989, 2, 395 [Organomet. Chem. USSR, 1989, 2 (Engl. Transl.)].
- G. L. Soloveichik, A. B. Gavrilov, and V. V. Strelets, Metalloorg. Khim., 1989, 2, 431 [Organomet. Chem. USSR, 1989, 2 (Engl. Transl.)].
- E. Samuel and J. Hénique, J. Organomet. Chem., 1996, 512, 183.
- 25. P. Lochert and P. Federlin, *Tetrahedron Lett.*, 1973, 13, 1109.
- M. Schmittel and R. Söllner, J. Chem. Soc., Chem. Comm., 1998, 565.
- V. A. Benderskii, A. G. Krivenko, V. A. Kurmaz, and G. V. Simbirtseva, *Elektrokhimiya*, 1988, 24, 158 [Sov. Electrochem., 1988, 24 (Engl. Transl.)].
- M. J. Burk, W. Tumas, M. D. Ward, and D. R. Wheeler, J. Am. Chem. Soc., 1990, 112, 6133.
- 29. V. V. Strelets and C. J. Pickett, *Elektrokhimiya*, 1994, 30, 1023 [Russ. Electrochem., 1994, 30 (Engl. Transl.)].

Received June 17, 1999; in revised form August 2, 1999